Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

نویسندگان

  • Amir Ali Ahmadi
  • Pablo A. Parrilo
چکیده

Stability analysis of polynomial differential equations is a central topic in nonlinear dynamics and control which in recent years has undergone major algorithmic developments due to advances in optimization theory. Notably, the last decade has seen a widespread interest in the use of sum of squares (sos) based semidefinite programs that can automatically find polynomial Lyapunov functions and produce explicit certificates of stability. However, despite their popularity, the converse question of whether such algebraic, efficiently constructable certificates of stability always exist has remained elusive. Naturally, an algorithmic question of this nature is closely intertwined with the fundamental computational complexity of proving stability. In this paper, we make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sos Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations of our proof are shown to imply strong NP-hardness of several other decision problems: testing local attractivity of an equilibrium point, stability of an equilibrium point in the sense of Lyapunov, invariance of the unit ball, boundedness of trajectories, convergence of all trajectories in a ball to a given equilibrium point, existence of a quadratic Lyapunov function, local collision avoidance, and existence of a stabilizing control law. (ii) We present a simple, explicit example of a globally asymptotically stable quadratic vector field on the plane which does not admit a polynomial Lyapunov function (joint work with M. Krstic and presented here without proof). For the subclass of homogeneous vector fields, we conjecture that asymptotic stability implies existence of a polynomial Lyapunov function, but show that the minimum degree of such a Lyapunov function can be arbitrarily large even for vector fields in fixed dimension and degree. For the same class of vector fields, we further establish that there is no monotonicity in the degree of polynomial Lyapunov functions. (iii) We show via an explicit counterexample that if the degree of the polynomial Lyapunov function is fixed, then sos programming may fail to find a valid Lyapunov function even though one exists. On the other hand, if the degree is allowed to increase, we prove that existence of a polynomial Lyapunov function for a planar or a homogeneous vector field implies existence of a polynomial Lyapunov function that is sos and that the negative of its derivative is also sos. ∗Amir Ali Ahmadi is a Goldstine Fellow at the Department of Business Analytics and Mathematical Sciences of the IBM Watson Research Center. Pablo A. Parrilo is with the Laboratory for Information and Decision Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Email: {a a a, parrilo}@mit.edu. †This research was partially supported by the NSF Focused Research Group Grant on Semidefinite Optimization and Convex Algebraic Geometry DMS-0757207. 1 ar X iv :1 30 8. 68 33 v1 [ m at h. O C ] 3 0 A ug 2 01 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Converse Variational Stability for Kurzweil Equations associated with Quantum Stochastic Differential Equations

Abstract-In analogous to classical ordinary differential equations, we study and establish results on converse variational stability of solution of quantum stochastic differential equations (QSDEs) associated with the Kurzweil equations. The results here generalize analogous results for classical initial value problems. The converse variational stability guaranteed the existence of a Lyapunov f...

متن کامل

Stability analysis of impulsive fuzzy differential equations with finite delayed state

In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...

متن کامل

Polynomial Lyapunov Functions for Exponential Stability of Nonlinear Systems on Bounded Regions

This paper presents a proof that the use of polynomial Lyapunov functions is not conservative for studying exponential stability properties of nonlinear ordinary differential equations on bounded regions. The main result implies that if there exists an n-times continuously differentiable Lyapunov function which proves exponential decay on a bounded subset of R, then there exists a polynomial Ly...

متن کامل

Moment Decay Rates of Stochastic Differential Equations with Time-varying Delay

One of the most important questions, especially in applications, is how to choose a decay function in the study of stability for a concrete equation. Motivated by the fact that the coefficients of the considered equation mainly suggest the choice of the decay function, the point of analysis in the paper is to carry out the Lyapunov function approach and to state coercivity conditions dependent ...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1308.6833  شماره 

صفحات  -

تاریخ انتشار 2012